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Abstract. We predict that the excitations of asuperconductorwith a spatially inhomogeneous 
order parameter A(r)  can be localised by Andreev scatering. Results of calculations on two 
models are presented. The first contains fluctuations only in the magnitude of A ( r ) ,  while 
the second has fluctuations only in the phase of A ( r ) .  For both models, our results suggest 
that all quasi-particle states are localised in one dimension. In particular we show that for 
quasi-particles incident on the superconductor from a normal wire, the reflection coefficient 
for Andreev scattering can approach unity, even for energies far above the maximum value 
of lA(r)l. This leads to new charging effects which can be used as an experimental probe for 
order-disorder transitions in A ( r ) .  

The existence of short coherence lengths E in high T, superconductors, leads to new 
properties that are absent in more conventional superconductors. For example in the 
former, the melting curve for an Abrikosov flux lattice [l-41 is quite distinct from the 
boundary between the normal and mixed states, whereas in conventional type-I1 
superconductors these are practically indistinguishable. Such changes in the scale of 
spatial variation of the order parameter A(.) are expected to yield corresponding changes 
in the excitations of the system. Whereas quasi-classical arguments [5] yield excellent 
results when 5,  in units of inverse Fermi wavevector, is of order lo3, a more accurate 
solution of the Bogoliubov-de Gennes (BG) equation is needed when E is of one or two 
orders of magnitude smaller. 

In this paper, we predict a new consquence of the smallness of g, namely the 
localisation of quasi-particles due to particle-hole scattering by a spatially inhomo- 
geneous order parameter. This mechanism for localisation is distinct from that of 
Anderson localisation, which arises from elastic scattering in disordered normal solids 
[6]. Such scattering contributes only to diagonal terms in the BG equation. In what 
follows it is shown that particle-hole scattering alone is sufficient to localise electrons. 
We also show that apart from more obvious consequences for transport properties, this 
phenomenon can lead to new charging effects which constitute a novel probe into order- 
disorder transitions of A (.). 

To demonstrate localisation by particle-hole scattering, we examine the simplest 
model one can envisage, based on the BG equation in one dimension 

Here all energies are measured in units of the chemical potential ps = f i2k$/2m and all 
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lengths in units of kF1. In what follows, we regard A(x) as given, at least in a probabilistic 
sense. Simple models based on the BG equation with a specified A(x) have proved to be 
particularly useful for understanding the properties of normal-superconducting-normal 
(N-S-N) [7], S-N-S [8] and N-S [9-111 junctions. In the latter case, if A(r) approaches 
a constant value A. in the bulk of the superconductor, the dominant scattering mech- 
anism for an incoming electron from the left (of energy E < Ao) is its conversion to an 
outgoing hole on the left, accompanied by the emission of a Cooper pair into the 
condensate. Since the Cooper pair carries charge, but not entropy, such off-diagonal, 
Andreev scattering has a marked effect on the thermal conductance, but the electrical 
conductance is almost unchanged. On the other hand, for E/Ao > 1 such studies show 
that the transmission coefficient for quasi-particles rapidly approaches unity. We now 
demonstrate that if A(x) is spatially disordered within the bulk of the superconductor, 
this result is drastically changed. 

To this end, imagine dividing the superconductor, whose ends are attached to normal 
leads, into cells of length lj and take the order parameter within cellj to be a constant of 
the form Ai e",. Two models will be considered, the first of which is invariant under time 
reversal, while the second is not. In model 1,  6, = 0 for all j ,  but A, is a random number 
chosen from a uniform distribution in the interval Ao(l  k a*). In model 2, A, = A. for 
all j ,  whereas 0, is a random number chosen from a uniform distribution in the range 
*ao. For a superconductor with no disorder, one expects lj - A;' and in what follows 
the choice E-' = A. = 10 is made. 

To calculate the reflection and transmission coefficients, the solution of equation (1) 
in cell j is written 

where U k . 9  and Vk.9 are the usual BCS amplitudes for cell j ,  satisfying 

and 
IUk,q12 + l V k , q l 2  = 

U k / V k  = (V,/U,)* = (Ai e",)/[E - ( k 2  - l)]. 

The quantities * k  and *q are the wavevectors of the degenerate particle-like and hole- 
like channels respectively. The condition that the solution of (1) and its first derivative 
must be continuous at a cell boundary, yields a collection of 4 x 4 transfer matrices 
relating the plane wave amplitudes of successive cells, whose product is the transfer 
matrix T, connecting the amplitudes AEh and BE' of the normal wire on the left of the 
superconductor to those of the normal wire on the right. 

Given T, it is a straightforward matter to construct the corresponding S-matrix 
connecting incoming to outgoing channels and from this a matrix P of reflection and 
transmission coefficients for fluxes. If we associate subscripts p ,  h (p ' ,  h') with particle 
and hole fluxes on the left (right) then P is of the form 

If a unit particle (hole) flux is incident from the left, then the first and second elements 
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model 1 model 2 

number of cells N 
Figure 1. Reflection and transmission coefficients 
as functions of the system size N ,  for E = 4A0, 
6, = 1 (model 1) and 6, = n/2 (model 2). 

0 t A o  0 1 A0 

quasi-particle energy E 
Figure 2. Plots of the inverse localisation length 
m(E) and density of states N ( E )  versus energy E 
for disorders of a,, = 0.1, 0.5, 1.0 (model 1) and 
& = n/4, n/2, jz (model 2). 

of the first (second) column of P are equal to the reflected particle and hole fluxes 
respectively and the third and fourth elements are respectively equal to the transmitted 
particle and hole fluxes. Similarly if a unit particle (hole) flux is incident from the right, 
then the elements of the third (fourth) column of P are equal to the transmitted particle 
and hole fluxes and the reflected particle and hole fluxes respectively. In general, the 16 
elements of P are distinct, satisfying only the requirement of quasi-particle number 
conservation, namely 

4 

Pi] = 1 
i =  1 

for allj. However, in the presence of time reversal symmetry as in model 1, it is easy to 
show that P is symmetric. Furthermore, for equal particle and hole wavevectors 
(k  = q) ,  P is invariant under an interchange of indices p ++ h and p’ * h’. For k = q this 
is a useful approximate symmetry. Finally, although inversion symmetry is broken for 
a given sample, it may be present on average. In this case, the ensemble averaged matrix 
(P), is invariant under an interchange of primed and unprimed subscripts. In what 
follows, we deal with non-aueraged quantities only. 

Figure 1 shows typical results for the variation of the reflection/transmission coef- 
ficients with the size (i.e. the number of cells N )  of the superconductor. For model 1, 
the values E = 4A0, aA = 1 were used and for model 2, E = 4A0, = n/2. In addition 
to these values, we have obtained results for a selection of E in the range 0 < E < 4A0 
and disorders in the range 0 < aA < 1,0 < 60 < n. In common with figure 1, these results 
strongly suggest that in the limit of large N ,  whatever the value of E ,  60 and aA, all 
transmission coefficients vanish. More important they reveal that in this limit, the normal 
reflection coefficients R,,, R h h ,  Rptp,, R h ’ h ’  also vanish and consequently an incoming 
quasi-particle of arbitrary energy is guaranteed to be Andreev reflected. 

As a measure of the degree of localisation, we extract the four Lyapanov exponents 
of T, which occur in + , - pairs and plot the smallest positive exponent &(E)  as a function 
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of E. Following well known treatments of multi-channel scattering [12-141, one expects 
the transmission coefficients to decay exponentially with an inverse decay length a ( E ) ,  
which is therefore identified with the inverse localisation length for quasi-particles of 
energy E. As one might expect from known properties of products of random matrices 
[13,14], a(E)  self-averages in the large-Nlimit and therefore no ensemble averaging is 
required. The results shown below were obtained from calculations on N = lo6 cells. 
For both models 1 and 2, figure 2 shows numerical results for a(E)  along with results for 
the average density of quasi-particle states per unit length N ( E ) ,  obtained using a node 
counting technique. These suggest that for any non-vanishing disorder, all states are 
localised. It is interesting that these results are qualitatively of the form obtained for 
disordered normal systems [ 151 suggesting that an analysis based on phase recurrence 
relations may be a useful approach to computing @(E) analytically. 

For large E ,  &(E) decreases monotonically. Indeedour results suggest that for model 
1, @(E)  - E-'/2 and for model 2, a(E)  - EP3I2. This is illustrated in figure 3, which shows 
that log-log plots of the quantities a l ( E )  = E'12a(E) and a2(E)  = E312a(E) respectively, 
versus disorder, fall onto single scaling curves, independent of E. Furthermore, since 
the curves approach straight lines at small disorder, one finds power law behaviours of 
the form a ( E )  - (SA).l and a(E)  - (S8).2 for models 1 and 2 respectively. From the 
slopes of the straight lines in this figure, one obtains o1 = 2.02 +_ 0.02 and o2 = 
1.99 k 0.01, which are close to the value [ 161 of (J = 2 obtained for the Anderson model 

of disordered normal solids in one dimension. Thus, our results sug est that in the limit 

and 2 respectively. 
The results in figures 1-3 demonstrate for the first time the occurrence of localisation 

due to particle-hole scattering in an inhomogeneous superconductor. As noted earlier, 
for a normal metal in contact with a homogeneous superconductor the probability Rhp 
of Andreev reflection rapidly approaches zero for E > Ao. For an inhomogeneous 
superconductor of length L ,  this is no longer valid and must be replaced by the condition 
a(E)L -G 1. Consequently, quasi-particles with energies much larger than A,, can be 
Andreev reflected with a high probability. This immediately leads to the possibility of 
detecting order-disorder transitions, such as the melting of a flux lattice (1, 21, by 
monitoring changes in transport properties. For example, one expects such a transition 
to be accompanied by a sharp drop in the electronic contributrion to the thermal 
conductance. 

A more novel effect accompanying an order-disorder transition arises from the non- 
conservation of quasi-particle charge associated with Andreev processes. Since an 
Andreev-scattered particle (hole) changes the charge on the superconductor by an 
amount + (-) 2e, any change in the reflection coefficients for this process will cause the 
superconductor to adjust its chemical potential p s  in order to re-establish equilibrium. 
To illustrate this and to obtain an estimate of the size of the effect consider, as illustrated 
in figure 4, two reservoirs at chemical potentials pl > p s  and p 2  < ps connected via oxide 
layers to the ends of a long superconducting wire. The oxide layers ensure that at 
equililbrium there is no chemical potential difference across the superconductor and, 
by varying their relative thicknesses, they can be used to control the relative numbers 
of quasi-particles from the left and right. At zero temperature, the particle branch in the 
left reservoir is populated from p s  to p s  + ( p l  - ps) = ps + ,iil and the hole branch in 
the right reservoir from ps to p s  + ( p s  - p 2 )  = ps + ii2. 

Let the number of particles (holes) per unit energy per unit time impinging on the 
superconductor from the left (right) be n l  (n2) .  Then assuming for convenience that n ,  

of large E and small disorder, a(E)  - E-'/* (SA)* and a(E)  - E-3 7 2 ( S o ) 2  for models 1 
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Figure 3. Plots of the scaled inverse localisation lengths a , (E)  = E'/2a(E)  and aZ(E)  = 
E3I2a(E) for models 1 and 2 respectively, as functions of the disorder. The full lines are 
straight lines of slope 2. 

I I 

normal normal 
lead lead 

Figure 4. Schematic diagram showing the situation arising at zero temperature when res- 
ervoirs at different chemical potentials p ,  and p2  are attached via normal leads and oxide 
layers of different thicknesses to opposite ends of an inhomogeneous superconductor. 

and n2  are energy independent over the energy range of interest, the currents I ,  and Z2 
in leads 1 and 2 respectively are 

P S + P I  P S + 7 2  

12 = nl  js d E  ( TPnp - T h t p )  f 122 j d E  (1 f R p , h ,  - RhZh,) ,  

PS 

To obtain an estimate of the size of the charging effect we make the following simplifying 
assumptions. For the ordered case: when E < A,, &p = R,, = R h , p (  = R p ' h '  = 1 and all 
other coefficients vanish and when E > Ao, TP,, = T h ' h  = ThVh, = Tpp, = 1 and all other 
coefficients vanish. For the - disordered case; a size dependent mobility edge a, > A. 
exists, such that for E < A,,, R h p  = R p h  = Rh,, ,  = Rpflh8 = 1 and all other coefficients 
vanish, while for E > h,, TPnp = T h ' h  = T h h '  = Tpp, = 1 and all others vanish. Since, in 
practice, n1 - n2 will never be precisely zero, we assume in what follows, nl  < n2, which 
implies that at equilibrium ,& < A, and < KO in the ordered and disordered cases 
respectively. Furthermore, if p1 < A,, ps is unaffected by an order-disorder transition. 
For this reason, the discussion is restricted to the case < A,, p1 > Ao. This yields, for 
the ordered case, I ,  = nl(pl + A,), Z2 = nl(pl - A,) + 2n2p2 which, after setting ZI = 
Z2 yields ,& = (n1 /n2)  Ao. Similarly in the disordered case, if x denotes the smaller of A, 
and PI, one finds = (nl/n2) x. These equations are trivially rearranged to yield the 
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chemical potential of the superconductor in the ordered and disordered cases. Taking 
the difference between the two results, shows that the change in ys due to this order- 
disorder transition is y = (x - Ah,)(n,/n2). As an example for nl = n2 and PI > A,,, 6y = 
A, - A,,. This extremely simple result, demonstrates that the energy scale for the 
charging effect is A,, which is of the order 10-2-10-3 eV and therefore readily measur- 
able. 

In this paper, we have demonstrated that spatial fluctuations in a superconducting 
order parameter provide a new mechanism for ‘over the barrier’ Andreev reflection and 
consequently can strongly modify quasi-particle transport properties. For simplicity the 
analysis has been restricted to a one-dimensional structure at zero temperature. At finite 
temperatures in common with localisation in normal metals, one expects the system size 
L in our analysis to be replaced by the inelastic quasi-particle scattering length 1. 
Several interesting questions remain to be answered. For example, what are the critical 
exponents in two and three dimensions and do non-trivial ‘mobility edges’ exist? What 
is the interplay between diagonal (i.e. normal) and off-diagonal disorder in the BG 
equations? With a view to addressing these questions, we have embarked on detailed 
calculations in two dimensions, and expect to report the results in the near future. 
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